3.1.51 \(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\) [51]

3.1.51.1 Optimal result
3.1.51.2 Mathematica [A] (verified)
3.1.51.3 Rubi [A] (verified)
3.1.51.4 Maple [C] (verified)
3.1.51.5 Fricas [C] (verification not implemented)
3.1.51.6 Sympy [F]
3.1.51.7 Maxima [F]
3.1.51.8 Giac [F]
3.1.51.9 Mupad [F(-1)]

3.1.51.1 Optimal result

Integrand size = 32, antiderivative size = 116 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^3 d}+\frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}} \]

output
2/3*B*sin(d*x+c)/b^2/d/(b*sec(d*x+c))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d/cos(d*x+ 
c)^(1/2)/(b*sec(d*x+c))^(1/2)+2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d 
*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d* 
x+c))^(1/2)/b^3/d
 
3.1.51.2 Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.70 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {B \sin (2 (c+d x))}{\sqrt {\cos (c+d x)}}}{3 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

input
Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]
 
output
(6*C*EllipticE[(c + d*x)/2, 2] + 2*B*EllipticF[(c + d*x)/2, 2] + (B*Sin[2* 
(c + d*x)])/Sqrt[Cos[c + d*x]])/(3*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + 
 d*x]])
 
3.1.51.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.344, Rules used = {3042, 4535, 27, 2030, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}+\int \frac {C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}+C \int \frac {\sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {C \int \frac {1}{\sqrt {b \sec (c+d x)}}dx}{b^2}+\frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}+\frac {B \int \frac {1}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {B \left (\frac {\int \sqrt {b \sec (c+d x)}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \left (\frac {\int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {B \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

input
Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]
 
output
(2*C*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d 
*x]]) + (B*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + 
 d*x]])/(3*b^2*d) + (2*Sin[c + d*x])/(3*b*d*Sqrt[b*Sec[c + d*x]])))/b
 

3.1.51.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
3.1.51.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.73 (sec) , antiderivative size = 536, normalized size of antiderivative = 4.62

method result size
parts \(-\frac {2 B \left (i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-\sin \left (d x +c \right )\right )}{3 d \sqrt {b \sec \left (d x +c \right )}\, b^{2}}+\frac {2 C \left (i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )+\sin \left (d x +c \right )\right )}{b^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(536\)
default \(-\frac {2 \left (i B \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+3 i C \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-3 i C \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+6 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-6 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )+3 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-3 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-B \cos \left (d x +c \right ) \sin \left (d x +c \right )-B \sin \left (d x +c \right )-3 C \sin \left (d x +c \right )\right )}{3 b^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(603\)

input
int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x,method=_RETURNVER 
BOSE)
 
output
-2/3*B/d/(b*sec(d*x+c))^(1/2)/b^2*(I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/ 
(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+I*(1/(cos(d* 
x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+ 
csc(d*x+c)),I)*sec(d*x+c)-sin(d*x+c))+2*C/b^2/d/(cos(d*x+c)+1)/(b*sec(d*x+ 
c))^(1/2)*(I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1 
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-I*EllipticF(I*(-cot(d*x+c 
)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*cos(d*x+c)+2*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)-2*I*(1/(cos(d*x+c)+1))^(1/2)*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+I*( 
1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-co 
t(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/ 
(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)+s 
in(d*x+c))
 
3.1.51.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.29 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 \, B \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, b^{3} d} \]

input
integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"fricas")
 
output
1/3*(2*B*sqrt(b/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - I*sqrt(2)*B*sqrt 
(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)* 
B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I* 
sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b^3*d)
 
3.1.51.6 Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(5/2),x)
 
output
Integral((B + C*sec(c + d*x))*sec(c + d*x)/(b*sec(c + d*x))**(5/2), x)
 
3.1.51.7 Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(5/2), x)
 
3.1.51.8 Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(5/2), x)
 
3.1.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2),x)
 
output
int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2), x)